Journey to the Dark Side (of the Universe)

Howard Baer Florida State University

- \star Dark energy
- ★ Concordance model
- ★ Dark matter
 - candidates
 - * axions
 - * neutralinos
 - * direct detection
 - * indirect detection
 - * collider detection

Milestones for Dark Energy

- ★ 1917: Einstein adds $\Lambda g_{\mu\nu}$ term to field equations to obtain static Universe solution
- $\star \sim 1930$: Einstein removes CC from field equations in light of Hubble observation of expanding universe
- **★** QFT: $\Lambda \sim M_{Pl}^4$? Why so small: finetuning to 10^{120}
- \bigstar 1987: Weinberg anthropic prediction of Λ to factor of 2
- ★ 1995: Krauss& Turner suggest $\Lambda \neq 0$
- \star 1999: detection of acceleration of universe via high z type Ia SN
- \star 2003: WMAP CMB probe measures DE: $\Omega_{\Lambda} \sim 0.7$ with $\Lambda \sim (3 \ meV)^4$
- \bigstar 2006: Hubble measurements find DE consistent with Λ at t=-9B years

What is the dark energy?

 \star time evolution of expansion of universe:

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(
ho + 3P) + \frac{\Lambda}{3}$$

- ★ various evidence $\Rightarrow \ddot{a} > 0$
- \star possibilities:
 - universe dominated by particle or field with $w=P/\rho<-1/3$ (quintessence)
 - $\Lambda > 0$
 - GR is wrong
- ★ testing DE: measure equation of state parameter $w = P/\rho$ as function of time (redshift z)
 - CC: w = -1 for all z

(1)

Prospects for Dark Energy

 \star Probes of DE

- type la supernovae in distant galaxies: standard candles
- baryon acoustic oscillations: CMB and galaxy density profile
- galaxy cluster counting
- weak gravitational lensing
- **★** testing DE: measure EOS $w(z) = P(z)/\rho(z)$? at different redshifts
- \star some possible space and land-based projects
 - Dark Energy Survey (DES): land-based
 - Supernova Acceleration Probe (SNAP): space-based SN, weak lensing
 - Large Synoptic Survey Telescope (LSST): dedicated land-based scope

Current theoretical prejudice about the CC

- \star After many years, no compelling solution as to why CC so small
- \star Only known principle to make CC=0: unbroken supersymmetry
 - But SUSY must be broken
- \star the view from string theory: the string landscape!
- \star (motivated by Weinberg 1987 prediction of Λ
 - there exist $\sim 10^{500}$ (?) vacua solutions in string theory
 - each one leads to different physical laws/ universe
 - only in rare cases would a possible universe lead to life (as we know it)
- \star therefore: an anthropic selection of a universe with a small but non-zero CC
- \star perhaps more philosophy than science...

Evidence for Dark Matter

- ★ Binding of clusters
- \star Galactic rotation curves
- ★ Gravitational lensing
- ★ CMB fluctuations
- \star Large scale structure
- **\star** Standard cosmological model: ΛCDM
 - $\Omega_B h^2 = 0.023 \pm 0.001$
 - $\Omega_{\nu}h^2 < 0.0076 \ 95\% \ CL$
 - $\Omega_{\Lambda}h^2 \sim 0.35$
 - $\Omega_{CDM}h^2 = 0.113 \pm 0.009$

Dark matter vs. dark energy: concordance (ΛCDM) model

Howie Baer, UWM seminar, December 1, 2006

Candidates for Dark Matter

★ unseen baryons, e.g. BHs, brown dwarves, stellar remnants

- inconsistent with BBN element abundance calc'n
- limits from MACHO, EROS, OGLE
- \star neutrinos (= HDM); structure formation ne
- \star axions
- ★ WIMPS
 - RPC supersymmetry: LSP
 - UED: lightest KK particle
 - Little Higgs models: lightest *T*-odd ptcl
 - Branons (XDDM)
 - Wimpzillas?

L. Roszkowski plot

Axions

- \star Peccei-Quinn solution to strong CP problem in QCD
- \star pseudo-Goldstone boson from PQ symmetry breaking at scale f_a
- \star non-thermally produced via vacuum mis-alignment

•
$$\Omega_a h^2 = \kappa_a (f_a/10^{12} \text{ GeV})^{1.175} \theta_i^2$$

- $\kappa_a, \ \theta_i \sim 1 \Rightarrow f_a \sim 10^{11} \text{ GeV}$ needed
- $m_a \sim \Lambda_{QCD}^2/f_a \sim 0.001 0.1 \mathrm{meV}$
- a couples to EM field: $a \gamma \gamma$ coupling (Sikivie)
- axion microwave cavity searches
- astrophysical bounds: stellar cooling via a emission

Constraints from axion searches

• ongoing microwave cavity searches: ADMX experiment

WIMPs: the WIMP miracle!

- Weakly Interacting Massive Particles
- assume in thermal equil'n in early universe
- Boltzman eq'n:

$$- dn/dt = -3Hn - \langle \sigma v_{rel} \rangle (n^2 - n_0^2)$$

•
$$\Omega h^2 = \frac{s_0}{\rho_c/h^2} \left(\frac{45}{\pi g_*}\right)^{1/2} \frac{x_f}{M_{Pl}} \frac{1}{\langle \sigma v \rangle}$$

•
$$\sim \frac{0.1 \ pb}{\langle \sigma v \rangle} \sim 0.1 \left(\frac{m_{wimp}}{100 \ GeV} \right)^2$$

• thermal relic \Rightarrow new physics at $M_{weak}!$

Physics beyond the SM

- ★ extra Higgs multiplets
- \star extra gauge symmetries U(1)'
- ★ extra matter
- \star remnants of GUTs
- ★ supersymmetry
- ★ technicolor variations (walking, etc)
- ★ large (weak scale) extra dimensions (ADD)
- ★ warped extra dimensions (Randall-Sundrum)
- ★ little Higgs theories

* • • •

SUSY is standard way beyond the SM

"if we consider the main classes of new physics that are currently being contemplated..., it is clear that (supersymmetry) is the most directly related to GUTs. SUSY offers a well defined model computable up to the GUT scale and is actually supported by the quantitative success of coupling unification in SUSY GUTs.For the other examples..., all contact with GUTs is lost or at least is much more remote. ... the SUSY picture... remains the standard way beyond the Standard Model"

G. Altarelli and F. Feruglio, hep-ph/0306265

Some successes of SUSY GUT theories

- ★ SUSY divergence cancellation maintains hierarchy between GUT scale $Q = 10^{16}$ GeV and weak scale Q = 100 GeV
- ★ gauge coupling unification!
- \star Lightest Higgs mass $m_h \stackrel{<}{\sim} 130$ GeV as indicated by radiative corrections!
- ★ radiative breaking of EW symmetry if $m_t \sim 100 200$ GeV!
- \star dark matter candidate: lightest neutralino $ilde{Z}_1$
- \star stable see-saw mechanism for neutrino mass
- ★ SO(10) SUSY GUT: baryogenesis via leptogenesis
- \star can give dark energy via CC Λ (but need huge fine-tuning...)
 - SUGRA = low energy limit of superstring?
 - stringy multiverse: anthropic selection of small CC?

Supersymmetry: fermions bosons

- \star MSSM: doubling of spectra
 - spin-0 squarks, sleptons
 - spin- $\frac{1}{2}$ charginos, neutralinos, gluino
 - extra Higgses: h, H, A, H^{\pm}
 - R-parity cons'n: LSP is stable
- \star LSP candidates
 - sneutrinos (excluded)
 - gravitinos (superWIMPs)
 - neutralinos
 - GMSB messengers
 - hidden sector states
 - axino/saxion

Gravity-mediated SUSY breaking models

- $\star~m_{3/2} \sim M_s^2/M_{Pl} \sim 10^3~{\rm GeV}$ for $M_s \sim 10^{11}~{\rm GeV}$
- ★ theory below $Q = M_{GUT}$ usually assumed to be MSSM
- ★ Soft SUSY breaking boundary conditions usually stipulated at $Q = M_{GUT}$
- ★ lots of possibilities depending on SUSY breaking/ GUTs/ compactification · · · (all unknown physics)
- ★ minimal choice: single scalar mass m_0 , gaugino mass $m_{1/2}$, trilinear term A_0 , bilinear term B
- \star evolve couplings/soft terms to M_{weak} via RG evolution
- \star EWSB radiatively due to large m_t
- \star parameter space: $m_0, m_{1/2}, A_0, \tan\beta, sign(\mu)$
- ★ this is simplest choice and a baseline model, but many other possibilities depending on high scale physics

- non-universal scalar masses
- non-universal gaugino masses
- FC soft SUSY breaking terms
- large *CP* violating phases
- additional fields beyond MSSM below M_{GUT} ?

• • • •

Constraints on SUSY models

★ LEP2:

$$\begin{split} &-m_h > 114.4 \; \text{GeV for SM-like } h \\ &-m_{\widetilde{W}_1} > 103.5 \; \text{GeV} \\ &-m_{\widetilde{e}_{L,R}} > 99 \; \text{GeV for } m_{\widetilde{\ell}} - m_{\widetilde{Z}_1} > 10 \; \text{GeV} \\ \star \; BF(b \to s\gamma) = (3.25 \pm 0.54) \times 10^{-4} \\ &- \; \text{SM theory: } BF(b \to s\gamma) \simeq 3.3 - 3.7 \times 10^{-4} \\ \star \; a_\mu = (g-2)_\mu/2 \\ &- \Delta a_\mu = (27.1 \pm 9.4) \times 10^{-10} \; \text{(Davier et al. } e^+e^- \\ &- \; \Delta a_\mu^{SUSY} \propto \frac{m_\mu^2 \mu M_i \tan \beta}{M_{SUSY}^4} \\ \star \; BF(B_s \to \mu^+\mu^-) < 2.6 \times 10^{-6} \; \; \text{(CDF)} \\ &- \; \text{constrains at very large } \tan \beta \stackrel{>}{\sim} 50 \\ \star \; \text{WMAP: } \Omega_{CDM} h^2 = 0.113 \pm 0.009 \end{split}$$

Neutralino dark matter

- ***** Why *R*-parity? natural in SO(10) SUSYGUTS if properly broken, or broken via compactification (Mohapatra, Martin, Kawamura, \cdots)
- \star In thermal equilibrium in early universe
- \star As universe expands and cools, freeze out
- ★ Number density obtained from Boltzmann eq'n

•
$$dn/dt = -3Hn - \langle \sigma v_{rel} \rangle (n^2 - n_0^2)$$

- depends critically on thermally averaged annihilation cross section times velocity
- \star many thousands of annihilation/co-annihilation diagrams
- \star several computer codes available
 - DarkSUSY, Micromegas, IsaReD (part of Isajet)

Some neutralino (co)annihilation processes

Howie Baer, UWM seminar, December 1, 2006

Effect of constraints on mSUGRA model

E⁸⁰⁰

FP₂

0.5

Main mSUGRA regions consistent with WMAP

- \star bulk region (low m_0 , low $m_{1/2}$)
- ★ stau co-annihilation region $(m_{\tilde{\tau}_1} \simeq m_{\tilde{Z}_1})$
- ★ HB/FP region (large m_0 where $|\mu| \rightarrow small$: Feng, Matchev, Moroi)
- ★ A-funnel $(2m_{\widetilde{Z}_1} \simeq m_A, m_H)$
- ★ h corridor $(2m_{\widetilde{Z}_1} \simeq m_h)$
- ★ stop co-annihilation region (particular A_0 values $m_{\tilde{t}_1} \simeq m_{\tilde{Z}_1}$)

Constraints as χ^2 on mSUGRA model

Howie Baer, UWM seminar, December 1, 2006

Direct detection of SUSY DM

★ Direct search via neutralino-nucleon scattering

Direct detection of SUSY DM

scan over mSUGRA space :

- ★ Stage 1:
 - CDMS1, Edelweiss, Zeplin1
- ★ Stage 2:
 - CDMS2, CRESST2, Zeplin2, Edelweiss2
- ★ Stage 3:
 - SuperCDMS, Zeplin4, Xenon, CLEAN

Indirect detection (ID) of SUSY DM: *v*-telescopes

- $\star \tilde{Z}_1 \tilde{Z}_1 \rightarrow b\bar{b}, etc.$ in core of sun (or earth): $\Rightarrow \nu_\mu \rightarrow \mu$ in ν telescopes
 - Amanda, Icecube, Antares

Howie Baer, UWM seminar, December 1, 2006

ID of SUSY DM: γ and anti-matter searches

- $\tilde{Z}_1\tilde{Z}_1 \rightarrow q\bar{q}, etc. \rightarrow \gamma$ in galactic core or halo
- $\tilde{Z}_1 \tilde{Z}_1 \rightarrow q\bar{q}, etc. \rightarrow e^+$ in galactic halo
- $\tilde{Z}_1 \tilde{Z}_1 \rightarrow q\bar{q}, etc. \rightarrow \bar{p}$ in galactic halo
- $\tilde{Z}_1 \tilde{Z}_1 \rightarrow q\bar{q}, etc. \rightarrow \bar{D}$ in galactic halo

Rates for γ s, e^+ s, \bar{p} s vs. m_0 for fixed $m_{1/2} = 550$ GeV, $\tan \beta = 50$

- HB, Belyaev, Krupovnickas and O' Farrill
- rates enhanced in A-funnel and HB/FP region (MHDM)

Sparticle reach of all colliders and relic density

HB, Belyaev, Krupovnickas, Tata

Sparticle reach of all colliders and relic density

HB, Belyaev, Krupovnickas, Tata

International linear e^+e^- collider (ILC)

★ A linear e^+e^- collider with $\sqrt{s} = 0.5 - 1$ TeV is highest priority project for HEP beyond LHC! Why?

- All beam energy ⇒ collision (aside from brem/beamstrahlung losses)
- beam energy known
- clean collision environment
- low (electroweak) background levels
- adjustable beam energy (threshold scans)
- e^- and possibly e^+ beam polarization
- ★ ILC will be *ideal* machine to perform precision spectroscopy of any new (EW interacting) matter states (provided they are kinematically accessible)!
- ★ timeline: decision-2012; ready-2020

Precision sparticle measurements at a e^+e^- linear collider

Role of ILC in DM physics

- Baltz, Battaglia, Peskin, Wizansky analysis
- fit all sparticle measurements to determine underlying SUSY parameters
- then plug in to theory to find relic density
- does $\Omega_{\widetilde{Z}_1} h^2$ saturate measured value?
- possible mixed dark matter? superWIMPs?

Howie Baer, UWM seminar, December 1, 2006

Also determine $\sigma_{SI}(\widetilde{Z}_1 p)$

• use to extract local DM density

Also determine $\langle \sigma v \rangle$

• couple to ID to gain e.g. DM halo tomography

Direct and indirect detection of neutralino DM

mSUGRA, $A_0=0$, tan $\beta=50$, $\mu<0$ 1600 1400 1200 g 1000 g (GeV) g (GeV) LC1000 600 400 _C5 no REWSB 200 0 1000 2000 3000 4000 5000 $m_0 (GeV)$ $\Phi(p^{-})$ 3e-7 GeV⁻¹ cm⁻² s⁻¹ sr⁻¹ (S/B)_{e+}=0.01 $- \Phi(\gamma) = 10^{-10} \text{ cm}^{-2} \text{ s}^{-1} - \Phi^{\text{sun}}(\mu) = 40 \text{ km}^{-2} \text{ yr}^{-1} - \text{m}_{h} = 114.4 \text{ GeV}$ $\Phi^{\text{earth}}(\mu)=40 \text{ km}^{-2} \text{ yr}^{-1}$ $\sigma(\tilde{Z}_1 p)=10^{-9} \text{ pb}$ • $0 < \Omega h^2 < 0.129$

HB, Belyaev, Krupovnickas, O'Farrill

SUGRA models with non-universal scalars

- Normal scalar mass hierarchy NMH: HB, Belyaev, Krupovnickas, Mustafayev
- $m_0(1) \simeq m_0(2) \ll m_0(3)$ (preserve FCNC bounds)
- motivation: reconcile $BF(b \rightarrow s\gamma)$ with $(g-2)_{\mu}$ anomaly

SUGRA models with non-universal Higgs mass (NUHM1)

- $m_{H_u}^2 = m_{H_d}^2 \equiv m_{\phi}^2
 eq m_0$: HB, Belyaev, Mustafayev, Profumo, Tata
- motivation: SO(10) SUSYGUTs where $\hat{H}_{u,d} \in \phi(10)$ while matter $\in \psi(16)$
- $m_{\phi}^2 \gg m_0 \Rightarrow$ higgsino DM for any $m_0, m_{1/2}$
- $m_{\phi}^2 < 0 \Rightarrow$ can have A-funnel for any $\tan \beta$

 $m_0=300$ GeV, $m_{1/2}=300$ GeV, $\tan\beta=10$, $A_0=0$, $\mu>0$, $m_t=178$ GeV

Howie Baer, UWM seminar, December 1, 2006

NUHM2 (2-parameter case)

- $m_{H_u}^2 \neq m_{H_d}^2 \neq m_0$: HB, Belyaev, Mustafayev, Profumo, Tata
- motivation: SU(5) SUSYGUTs where $\hat{H}_u \in \phi(5)$, $\hat{H}_d \in \phi(\bar{5})$
- can re-parametrize $m_{H_u}^2, m_{H_d}^2 \leftrightarrow \mu, m_A$ (Ellis, Olive, Santoso)
- large S term in RGEs \Rightarrow light \tilde{u}_R , \tilde{c}_R squarks, $m_{\tilde{e}_L} < m_{\tilde{e}_R}$

NUHM2: m₀=300GeV, m_{1/2}=300GeV, tanβ=10, A₀=0, m_t=178GeV

Howie Baer, UWM seminar, December 1, 2006

Gaugino mass non-universality

- $M_1 \neq M_2 \neq M_3$: HB, TK, AM, EP, SP, XT
- motivation: SUSYGUTs where gauge kinetic function transforms non-trivially
- $M_2 \sim M_1$ at M_{GUT} : mixed wino dark matter (MWDM)
- $M_2 \simeq -M_1$ at M_{GUT} : bino-wino co-annihilation (BWCA)

Howie Baer, UWM seminar, December 1, 2006

Gaugino mass non-universality: low M_3 case

- $M_3 < M_1 \sim M_2$: HB, TK, AM, EP, SP, XT
- motivation: mixed-moduli AMSB models
- lower $M_3 \rightarrow low \ m_{\tilde{q}} \rightarrow low \ \mu \rightarrow mixed \ higgsino \ DM$

Howie Baer, UWM seminar, December 1, 2006

Direct detection of well-tempered neutralino

- adjust mixing of \widetilde{Z}_1 to get $\Omega_{\widetilde{Z}_1} h^2 \sim 0.11$
- then also get enhanced DD rates
- DD asymptotes around $\sim 10^{-8}~{\rm pb}$

SuperWIMPs (e.g. \tilde{G} in SUGRA or G in UED)

- ★ $m_{\tilde{G}} = F/\sqrt{3}M_* \sim \text{TeV}$ in Supergravity models
 - usually \tilde{G} decouples (but see Moroi et al. for BBN constraints)
 - if \tilde{G} is LSP, then calculate NLSP abundance as a thermal relic: $\Omega_{NLSP}h^2$
 - $\widetilde{Z}_1 \to h \widetilde{G}, \ Z \widetilde{G}, \ \gamma \widetilde{G} \text{ or } \widetilde{\tau}_1 \to \tau \widetilde{G} \text{ possible}$
 - * lifetime $\tau_{NLSP} \sim 10^4 10^8 \, \mathrm{sec}$
 - * constraints from BBN, CMB not too severe
 - * DM relic density is then $\Omega_{\tilde{G}} = \frac{m_{\tilde{G}}}{m_{NLSP}} \Omega_{NLSP}$
 - * Feng, Rajaraman, Su, Takayama; Ellis, Olive, Santoso, Spanos
 - \tilde{G} undetectable via direct/indirect DM searches
 - unique collider signatures:
 - * $\tilde{\tau}_1$ =NLSP: stable charged tracks
 - * can collect NLSPs in e.g. water (slepton trapping)
 - * monitor for $NLSP \rightarrow G$ decays

Conclusions

- \star Overwhelming evidence for CDM in the universe
- ★ Numerous candidate CDM particles
 - Axions: searches ongoing (ADMX group)
- ★ WIMPs: thermal relic from Big Bang
- ★ SUSY is favored WIMP candidate, but must test
- ★ Direct/ indirect DM detection prospects
- \star Detection at colliders: Tevatron, LHC, ILC
- ★ Beyond mSUGRA:
 - normal mass hierarchy, NUHM1, NUHM2 models
 - gaugino mass non-universality: MWDM, BWCA, low M_3
- **\star** SuperWIMPs: \tilde{G} in SUSY; G in UED