Supersymmetry at the LHC

Howard Baer Florida State University

- \star SUSY at LHC
 - SUSY models
 - sparticle production
 - sparticle decay
 - event generation
 - searches at LHC
 - precision measurements

Models of SUSY breaking

- ★ Spontaneous breaking of SUSY phen. inconsistent within MSSM
- \star Hidden sector models (HS)
- ★ HS is arena for SUSY breaking; how to communicate SUSY breaking to visible sector (VS)?
 - gravity mediation: supergravity (SUGRA) and local SUSY: minimal messenger sector: $m_{3/2} \sim$ TeV: LSP=bino/higgsino/wino/gravitino?
 - gauge mediation (GMSB): introduce messenger sector fields as intermediary between HS and VS: $m_{3/2} \ll$ TeV: LSP=gravitino
 - anomaly mediation (AMSB): $m_{3/2}$ > TeV: LSP=wino
- ★ role of extra dimensions? compactification? sequestered sector and AMSB; gaugino mediation; GUTs; · · ·

Calculate spectra using Isajet/Isasugra

★ MSSM: weak scale inputs (no RGE running)

★ mSUGRA

- $m_0, m_{1/2}, A_0, \tan\beta, sign(\mu)$
- non-universal SUGRA

★ gauge mediated SUSY breaking (GMSB)

- Λ , M, n_5 , $\tan\beta$, $sign(\mu)$, C_{grav}
- non-minimal GMSB

★ anomaly-mediated SUSY breaking (AMSB)

- $m_0, m_{3/2}, \tan\beta, sign(\mu)$
- non-minimal AMSB

★ mixed modulus-AMSB

• α , $m_{3/2}$, $\tan \beta$, $sign(\mu)$, modular weights

Sparticle mass spectra

- \star Mass spectra codes
- ★ RGE running: $M_{GUT} \rightarrow M_{weak}$
 - Isajet (HB, Paige, Protopopescu, Tata)
 - $* \geq 7.72$: Isatools
 - SuSpect (Djouadi, Kneur, Moultaka)
 - SoftSUSY (Allanach)
 - Spheno (Porod)

★ Comparison (Belanger, Kraml, Pukhov)

★ Website: http://kraml.home.cern.ch/kraml/comparison/

Constraints on SUSY models

★ LEP2:

$$\begin{array}{l} - \ m_h > 114.4 \ {\rm GeV} \ {\rm for} \ {\rm SM-like} \ h \\ - \ m_{\widetilde{W}_1} > 103.5 \ {\rm GeV} \\ - \ m_{\widetilde{e}_{L,R}} > 99 \ {\rm GeV} \ {\rm for} \ m_{\widetilde{\ell}} - m_{\widetilde{Z}_1} > 10 \ {\rm GeV} \\ \star \ BF(b \to s\gamma) = (3.25 \pm 0.54) \times 10^{-4} \ ({\rm BELLE, \ CLEO, \ ALEPH} \\ - \ {\rm SM \ theory:} \ BF(b \to s\gamma) \simeq 3.3 - 3.7 \times 10^{-4} \\ \star \ a_\mu = (g-2)_\mu/2 \ ({\rm Muon} \ g-2 \ {\rm collaboration}) \\ - \ \Delta a_\mu = (27.1 \pm 9.4) \times 10^{-10} \ ({\rm Davier \ et \ al.} \ e^+e^-) \\ - \ \Delta a_\mu^{SUSY} \propto \frac{m_\mu^2 \mu M_i \ {\rm tan} \beta}{M_{SUSY}^4} \\ \star \ BF(B_s \to \mu^+\mu^-) < 1.5 \times 10^{-7} \ \ ({\rm CDF-new!}) \\ - \ {\rm constrains \ at \ very \ large \ tan} \ \beta \stackrel{>}{\sim} 50 \\ \star \ \Omega_{CDM} h^2 = 0.113 \pm 0.009 \ ({\rm WMAP}) \end{array}$$

Results of χ^2 fit using τ data for a_{μ} :

HB, C. Balazs: JCAP 0305, 006 (2003)

H. Baer, SUSY at LHC, August 11, 2006

Parton model of hadronic reactions

For a hadronic reaction,

$$A + B \rightarrow c + d + X,$$

where c and d are superpartners and X represents assorted hadronic debris, we have an associated subprocess reaction

$$a + b \rightarrow c + d$$
,

whose cross section can be computed using the Lagrangian for the MSSM. To obtain the final cross section, we must convolute the appropriate subprocess production cross section $d\hat{\sigma}$ with the parton distribution functions:

$$d\sigma(AB \to cdX) = \sum_{a,b} \int_0^1 dx_a \int_0^1 dx_b f_{a/A}(x_a, Q^2) \ f_{b/B}(x_b, Q^2) \ d\hat{\sigma}(ab \to cd).$$

where the sum extends over all initial partons a, b whose collisions produce the final state c + d.

(1)

Chargino-neutralino production

H. Baer, SUSY at LHC, August 11, 2006

H. Baer, SUSY at LHC, August 11, 2006

H. Baer, SUSY at LHC, August 11, 2006

Slepton pair production

H. Baer, SUSY at LHC, August 11, 2006

H. Baer, SUSY at LHC, August 11, 2006

H. Baer, SUSY at LHC, August 11, 2006

Gluino and squark pair production

H. Baer, SUSY at LHC, August 11, 2006

Production at Tevatron

H. Baer, SUSY at LHC, August 11, 2006

Production at LHC

H. Baer, SUSY at LHC, August 11, 2006

H. Baer, SUSY at LHC, August 11, 2006

Squark decays

$$\begin{split} \widetilde{u}_L & \to & u\widetilde{Z}_i, \ d\widetilde{W}_j^+, \ u\widetilde{g}, \\ \widetilde{d}_L & \to & d\widetilde{Z}_i, \ u\widetilde{W}_j^-, \ d\widetilde{g}, \\ \widetilde{u}_R & \to & u\widetilde{Z}_i, \ u\widetilde{g}, \\ \widetilde{d}_R & \to & d\widetilde{Z}_i, \ d\widetilde{g}. \end{split}$$

H. Baer, SUSY at LHC, August 11, 2006

Slepton decays

Chargino decays

$$\begin{split} \widetilde{W}_{j} &\to W \widetilde{Z}_{i}, \ H^{-} \widetilde{Z}_{i}, \\ &\to \widetilde{u}_{L} \overline{d}, \ \overline{\widetilde{d}}_{L} u, \ \widetilde{c}_{L} \overline{s}, \ \overline{\widetilde{s}}_{L} c, \ \widetilde{t}_{1,2} \overline{b}, \ \widetilde{b}_{1,2} t, \\ &\to \widetilde{\nu}_{e} \overline{e}, \ \overline{\widetilde{e}}_{L} \nu_{e}, \ \widetilde{\nu}_{\mu} \overline{\mu}, \ \overline{\widetilde{\mu}}_{L} \nu_{\mu}, \ \widetilde{\nu}_{\tau} \overline{\tau}, \overline{\widetilde{\tau}}_{1,2} \nu_{\tau}, \text{ and} \\ \widetilde{W}_{2} &\to Z \widetilde{W}_{1}, \ h \widetilde{W}_{1}, \ H \widetilde{W}_{1} \text{ and } A \widetilde{W}_{1}. \end{split}$$

Charginos may decay to a lighter neutralino via

Neutralino decays

$$\widetilde{Z}_{i} \rightarrow W \widetilde{W}_{j}, \ H^{-} \widetilde{W}_{j}, \ Z \widetilde{Z}_{i'}, \ h \widetilde{Z}_{i'}, \ H \widetilde{Z}_{i'}, \ A \widetilde{Z}_{i'} \rightarrow \widetilde{q}_{L,R} \overline{q}, \ \overline{\widetilde{q}}_{L,R} q, \ \widetilde{\ell}_{L,R} \overline{\ell}, \ \overline{\widetilde{\ell}}_{L,R} \ell, \ \widetilde{\nu}_{\ell} \overline{\nu}_{\ell}, \ \overline{\widetilde{\nu}}_{\ell} \nu_{\ell}.$$

If 2-body modes are closed, then the neutralino can decay via

H. Baer, SUSY at LHC, August 11, 2006

Sparticle cascade decays

Event generation for sparticles

Event generations for SUSY

- ★ Isajet (HB, Paige, Protopopsecu, Tata)
 - IH, FW-PS, n-cut Pomeron UE
- ★ Pythia (Sjöstrand, Lönnblad, Mrenna)
 - SH, FW-PS, multiple scatter UE, SUSY at low $\tan\beta$ only
- ★ Herwig (Marchesini, Webber, Seymour, Richardson,...)
 - CH, AO-PS, Phen. model UE, Isawig

SUSY scattering event: Isajet simulation

$$\begin{split} & m_0 = 100 \; \text{GeV}, \, m_{1/2} = 300 \; \text{GeV}, \, \tan\beta = 2, \, A_0 = 0, \, \mu < 0, \\ & m(\tilde{q}) = 686 \; \text{GeV}, \, m(\tilde{g}) = 766 \; \text{GeV}, \, m(\tilde{\chi}^0_{\;\;2}) = 257 \; \text{GeV}, \\ & m(\tilde{\chi}^0_{\;\;1}) = 128 \; \text{GeV}. \end{split}$$

Charged particles with $p_t > 2$ GeV, $|\eta| < 3$ are shown; neutrons are not shown; no pile up events superimposed.

Search for SUSY at CERN LHC

- \star $\tilde{g}\tilde{g}$, $\tilde{g}\tilde{q}$, $\tilde{q}\tilde{q}$ production dominant for $m \stackrel{<}{\sim} 1$ TeV
- \star lengthy cascade decays are likely

 - $1\ell + \not\!\!E_T + \mathsf{jets}$
 - $OS \ 2\ell + E_T + jets$
 - $-SS2\ell + E_T + jets$
 - $3\ell + \not\!\!E_T + \mathsf{jets}$
- ★ BG: W + jets, Z + jets, $t\bar{t}$, $b\bar{b}$, WW, 4t, ...
- \star Grid of cuts gives optimized S/B

Pre-cuts and cuts

- ★ $N_j \ge 2$ (where $p_T(jet) > 40$ GeV and $|\eta(jet)| < 3$
- **\star** Grid of cuts for optimized S/B:
 - $-N_j \ge 2 10$

 - $E_T(j1) > 40 1000 \text{ GeV}$
 - $E_T(j2) > 40 500 \text{ GeV}$
 - $-S_T > 0 0.2$
 - muon isolation
- $\bigstar~S>10$ events for $100~{\rm fb}^{-1}$
- ★ $S > 5\sqrt{B}$ for optimal set of cuts

Sparticle reach of LHC for 100⁻¹ **fb**

HB, Balazs, Belyaev, Krupovnickas, Tata: JHEP 0306, 054 (2003)

H. Baer, SUSY at LHC, August 11, 2006

Sparticle reach of all colliders and relic density

HB, Belyaev, Krupovnickas, Tata: JHEP 0402, 007 (2004)

H. Baer, SUSY at LHC, August 11, 2006

Precision measurements at LHC

- $M_{eff} = E_T + E_T(j1) + \dots + E_T(j4)$ sets overall $m_{\tilde{g}}, m_{\tilde{q}}$ scale
- $m(\ell \bar{\ell}) < m_{\widetilde{Z}_2} m_{\widetilde{Z}_1}$ mass edge
- $m(\ell \bar{\ell})$ distribution shape
- combine $m(\ell \bar{\ell})$ with jets to gain $m(\ell \bar{\ell} j)$ mass edge: info on $m_{\tilde{q}}$
- further mass edges possible *e.g.* $m(\ell \bar{\ell} j j)$
- Higgs mass bump $h \to b\bar{b}$ likely visible in $\not\!\!E_T + jets$ events
- in favorable cases, may overconstrain system for a given model
- ★ methodology very p-space dependent
- **\star** some regions are very difficult *e.g. HB/FP*

$M_{eff} = E_T(j1) + E_T(j2) + E_T(j3) + E_T(j4) + \not\!\!E_T$

H. Baer, SUSY at LHC, August 11, 2006

 $m(\ell^+\ell^-)$ mass edge from $\widetilde{Z}_2 \to \ell^+\ell^-\widetilde{Z}_1$

H. Baer, SUSY at LHC, August 11, 2006

H. Baer, SUSY at LHC, August 11, 2006

$m(b\bar{b})$ Higgs mass bump in SUSY jets $+ \not\!\!E_T$ events

Conclusions

★ SUSY models

★ SUGRA models most naturally encompass DM: thermal WIMPS

- ★ WMAP bound $\Omega_{\widetilde{Z}_1} h^2 = 0.113 \pm 0.009$ especially constraining
 - bulk, $\tilde{\tau}$ coann., HB/FP, A-funnel, h-funnel, \tilde{t}_1 coann.
- **\star** Various regions \Rightarrow distinct collider/DM signatures
- ★ SUSY (SUGRA) at LHC
 - sparticle production
 - sparticle decays
 - event generation
 - studies of when $S > 5\sqrt{B}$ for given int. lum.
 - a variety of precision measurements likely possible if SUSY discovered at LHC