Prospects for SUSY at LHC in light of Dark Matter

Howard Baer Florida State/Freiburg

- \star Supersymmetric models
- \star WMAP allowed regions
- ★ SUSY at LHC in mSUGRA
- ★ Direct, indirect detection of neutralinos
- \star Models with non-universal soft terms
 - scalar mass non-universality
 - gaugino mass non-universality
- \star SUSY in the KKLT stringy model

 $\begin{array}{l} m_0 = 100 \; \text{GeV}, \, m_{1/2} = 300 \; \text{GeV}, \, tan\beta = 2, \, A_0 = 0, \, \mu < 0, \\ m(\tilde{q}) = 686 \; \text{GeV}, \, m(\tilde{g}) = 766 \; \text{GeV}, \, m(\tilde{\chi}^0_{\ 2}) = 257 \; \text{GeV}, \\ m(\tilde{\chi}^0_{\ 1}) = 128 \; \text{GeV}. \end{array}$

Charged particles with $p_t > 2$ GeV, $|\eta| < 3$ are shown; neutrons are not shown; no pile up events superimposed.

The Standard Model of Particle Physics

Construction

- ★ gauge symmetry: $SU(3)_C \times SU(2)_L \times U(1)_Y$
- \star matter content: 3 generations quarks and leptons

$$\left(\begin{array}{c} u \\ d \end{array}\right)_{L} u_{R}, \ d_{R}; \quad \left(\begin{array}{c} \nu \\ e \end{array}\right)_{L}, \ e_{R}$$
 (1)

\star Higgs sector \Rightarrow spontaneous electroweak symmetry breaking:

$$\phi = \begin{pmatrix} \phi^+ \\ \phi_0 \end{pmatrix} \tag{2}$$

- **\star** Yukawa interactions \Rightarrow massive quarks and leptons
- ★ 19 parameters
- \star good-to-excellent description of (almost) *all* accelerator data!

Data *not* **described by the SM**

- neutrino masses and mixing
- baryogenesis $n_B/n_\gamma \sim 10^{-10}$
 - (matter anti-matter asymmetry)
- cold dark matter
- dark energy
- ★ Note: astro/cosmo origin of all discrepancies!
- \star We will adopt the WMAP result
 - $\ \Omega_{CDM} h^2 = 0.113 \pm 0.009$
 - as a guide to prospects for SUSY discovery

Supersymmetric models

- ★ We will assume the MSSM is the correct effective theory at $Q < M_{GUT}$
- ★ We will focus on models with gravity-mediated SUSY breaking since these most naturally give rise to thermal relics which can describe the CDM needed in the universe
- ★ Soft SUSY breaking boundary conditions usually stipulated at $Q = M_{GUT}$
- ★ lots of possibilities depending on SUSY breaking/ GUTs/ compactification · · · (all unknown physics)
- ★ minimal choice: single scalar mass m_0 , gaugino mass $m_{1/2}$, trilinear term A_0 , bilinear term B
- \star evolve couplings/soft terms to M_{weak} via RG evolution
- \star EWSB radiatively due to large m_t
- \star parameter space: $m_0, m_{1/2}, A_0, \tan\beta, sign(\mu)$

- \star this is simplest choice and a baseline model, but many other possibilities depending on high scale physics
 - non-universal scalar masses
 - non-universal gaugino masses
 - FC soft SUSY breaking terms
 - large *CP* violating phases
 - additional fields beyond MSSM below M_{GUT} ?

• • • •

Sparticle mass spectra

- \star Mass spectra codes
- ★ RGE running: $M_{GUT} \rightarrow M_{weak}$
 - Isajet (HB, Paige, Protopopescu, Tata)
 - $* \geq$ 7.72: Isatools
 - SuSpect (Djouadi, Kneur, Moultaka)
 - SoftSUSY (Allanach)
 - Spheno (Porod)

★ Comparison (Belanger, Kraml, Pukhov)

★ Website: http://kraml.home.cern.ch/kraml/comparison/

Constraints on SUSY models

★ LEP2:

$$\begin{split} &-m_h > 114.4 \text{ GeV for SM-like } h \\ &-m_{\widetilde{W}_1} > 103.5 \text{ GeV} \\ &-m_{\widetilde{e}_{L,R}} > 99 \text{ GeV for } m_{\widetilde{\ell}} - m_{\widetilde{Z}_1} > 10 \text{ GeV} \\ &\star BF(b \to s\gamma) = (3.25 \pm 0.54) \times 10^{-4} \text{ (BELLE, CLEO, ALEPH} \\ &- \text{SM theory: } BF(b \to s\gamma) \simeq 3.3 - 3.7 \times 10^{-4} \\ &\star a_{\mu} = (g-2)_{\mu}/2 \text{ (Muon } g-2 \text{ collaboration)} \\ &- \Delta a_{\mu} = (27.1 \pm 9.4) \times 10^{-10} \text{ (Davier et al. } e^+e^-) \\ &- \Delta a_{\mu}^{SUSY} \propto \frac{m_{\mu}^2 \mu M_i \tan \beta}{M_{SUSY}^4} \\ &\star BF(B_s \to \mu^+\mu^-) < 1.5 \times 10^{-7} \text{ (CDF-new!)} \\ &- \text{ constrains at very large } \tan \beta \gtrsim 50 \\ &\star \Omega_{CDM}h^2 = 0.113 \pm 0.009 \text{ (WMAP)} \end{split}$$

Neutralino dark matter

- ***** Why *R*-parity? natural in SO(10) SUSYGUTS if properly broken, or broken via compactification (Mohapatra, Martin, Kawamura, \cdots)
- \star In thermal equilibrium in early universe
- \star As universe expands and cools, freeze out
- ★ Number density obtained from Boltzmann eq'n

•
$$dn/dt = -3Hn - \langle \sigma v_{rel} \rangle (n^2 - n_0^2)$$

- depends critically on thermally averaged annihilation cross section times velocity
- ★ many thousands of annihilation/co-annihilation diagrams
- \star equally many computer codes
 - DarkSUSY, Micromegas, IsaReD, · · ·

Main mSUGRA regions consistent with WMAP

- **\star** bulk region (low m_0 , low $m_{1/2}$)
- \star stau co-annihilation region $(m_{\tilde{\tau}_1} \simeq m_{\widetilde{Z}_1})$
- ★ HB/FP region (large m_0 where $|\mu| \rightarrow small$)
- ★ A-funnel $(2m_{\widetilde{Z}_1} \simeq m_A, m_H)$
- ★ h corridor $(2m_{\widetilde{Z}_1} \simeq m_h)$
- ★ stop co-annihilation region (particular A_0 values $m_{\tilde{t}_1} \simeq m_{\tilde{Z}_1}$)

Results of χ^2 fit using τ data for a_{μ} :

HB, C. Balazs: JCAP 0305, 006 (2003)

H. Baer, CERN seminar, June 23, 2006

Production of sparticles at LHC

Sparticle cascade decays

Event generation for sparticles

Search for SUSY at CERN LHC

- \star $\tilde{g}\tilde{g}$, $\tilde{g}\tilde{q}$, $\tilde{q}\tilde{q}$ production dominant for $m \stackrel{<}{\sim} 1$ TeV
- \star lengthy cascade decays are likely

 - $1\ell + \not\!\!E_T + \mathsf{jets}$
 - $OS \ 2\ell + \not\!\!E_T + \mathsf{jets}$
 - $-SS2\ell + E_T + jets$
 - $3\ell + \not\!\!E_T + \mathsf{jets}$
- ★ BG: W + jets, Z + jets, $t\bar{t}$, $b\bar{b}$, WW, 4t, ...
- \bigstar Grid of cuts gives optimized S/B

Pre-cuts and cuts

- ★ $N_j \ge 2$ (where $p_T(jet) > 40$ GeV and $|\eta(jet)| < 3$
- **\star** Grid of cuts for optimized S/B:
 - $-N_j \ge 2 10$

 - $E_T(j1) > 40 1000 \text{ GeV}$
 - $E_T(j2) > 40 500 \text{ GeV}$
 - $-S_T > 0 0.2$
 - muon isolation
- $\bigstar~S>10$ events for $100~{\rm fb}^{-1}$
- $\bigstar~S>5\sqrt{B}$ for optimal set of cuts

Sparticle reach of LHC for 100⁻¹ **fb**

HB, Balazs, Belyaev, Krupovnickas, Tata: JHEP 0306, 054 (2003)

H. Baer, CERN seminar, June 23, 2006

Sparticle reach of all colliders and relic density

HB, Belyaev, Krupovnickas, Tata: JHEP 0402, 007 (2004)

Precision measurements at LHC

- $M_{eff} = E_T + E_T(j1) + \cdots + E_T(j4)$ sets overall $m_{\tilde{g}}, m_{\tilde{q}}$ scale
- $m(\ell \bar{\ell}) < m_{\widetilde{Z}_2} m_{\widetilde{Z}_1}$ mass edge
- $m(\ell \bar{\ell})$ distribution shape
- combine $m(\ell \bar{\ell})$ with jets to gain $m(\ell \bar{\ell} j)$ mass edge: info on $m_{\tilde{q}}$
- further mass edges possible e.g. $m(\ell \bar{\ell} j j)$
- Higgs mass bump $h \to b\bar{b}$ likely visible in $\not\!\!E_T + jets$ events
- in favorable cases, may overconstrain system for a given model
- ★ methodology very p-space dependent
- \star some regions are very difficult *e.g.* HB/FP

Focus on the Focus Point region

- \star Can reach be extended in HB/FP region? Three approaches
- Mercadante, Mizukoshi, Tata, PRD72 (2005) 035009
 - use also *b*-jet tag; increase of reach by 15%
- HB, Krupovnickas, Profumo, Ullio: JHEP 0510, 020 (2005) – search for $pp \rightarrow \widetilde{W}_1 \widetilde{Z}_2 \rightarrow 3\ell + \not\!\!E_T$: similar reach as BBBKT mSUGRA
- Belyaev et al (forthcoming)
 - ≥ 9 jets+ leptons + E_T : much greater reach claimed

Direct and indirect detection of SUSY DM

- ★ Direct search via neutralino-nucleon scattering
- ★ Indirect search for SUSY DM: (HB, J. O'Farrill)
 - $\tilde{Z}_1 \tilde{Z}_1 \rightarrow b\bar{b}, etc.$ in core of sun (or earth): $\Rightarrow \nu_\mu \rightarrow \mu$ in ν telescopes * Amanda, Icecube, Antares
 - $\tilde{Z}_1 \tilde{Z}_1 \rightarrow q\bar{q}, etc. \rightarrow \gamma$ in galactic core or halo
 - $\tilde{Z}_1 \tilde{Z}_1 \to q\bar{q}, etc. \to e^+$ in galactic halo
 - $\tilde{Z}_1 \tilde{Z}_1 \rightarrow q\bar{q}, etc. \rightarrow \bar{p}$ in galactic halo
 - $\tilde{Z}_1 \tilde{Z}_1 \rightarrow q\bar{q}, etc. \rightarrow \bar{D}$ in galactic halo
 - * *D* recently detected (BESS)
 - * future: Gaseous Antiparticle Spectrometer (GAPS)-
 - \cdot slow D; look for x-rays after capture on atoms
 - HB and Profumo, JCAP 0512, 008 (2005)

Direct detection of SUSY DM

scan over mSUGRA space :

- ★ Stage 1:
 - CDMS1, Edelweiss, Zeplin1
- ★ Stage 2:
 - CDMS2, CRESST2, Zeplin2, Edelweiss2
- ★ Stage 3:
 - SuperCDMS, Zeplin4, Xenon, WARP

Rates for γ s, e^+ s, \bar{p} s vs. m_0 for fixed $m_{1/2} = 550$ GeV, $\tan \beta = 50$

- HB, Belyaev, Krupovnickas and O' Farrill
- rates enhanced in A-funnel and HB/FP region (MHDM)

Direct and indirect detection of neutralino DM

HB, Belyaev, Krupovnickas, O'Farrill: JCAP 0408, 005 (2004)

SUGRA models with non-universal scalars

- Normal scalar mass hierarchy (NMH):
- $BF(b \rightarrow s\gamma)$ prefers heavy 3rd gen. squarks
- $(g-2)_{\mu}$ prefers light 2nd gen. sleptons
- $m_0(1) \simeq m_0(2) \ll m_0(3)$
 - (preserve FCNC bounds)
- motivation: reconcile $BF(b \to s\gamma)$ with $(g-2)_{\mu^{\text{E}}}^{\widetilde{\mathfrak{g}}^{\text{70}}}$
 - HB, Belyaev, Krupovnickas, Mustafayev
 - JHEP 0406, 044 (2004)

Normal scalar mass hierarchy: parameter space

- $m_0(1) \simeq m_0(2) \ll m_0(3)$
- LHC: light sleptons, enhanced leptonic cascade decays
- ILC: first two gen. sleptons likely accessible; squarks/staus heavy

SUGRA models with non-universal Higgs mass (NUHM1)

- $m_{H_u}^2 = m_{H_d}^2 \equiv m_{\phi}^2
 eq m_0$: Drees; HB, Belyaev, Mustafayev, Profumo, Tata
- motivation: SO(10) SUSYGUTs where $\hat{H}_{u,d} \in \phi(10)$ while matter $\in \psi(16)$
- $m_{\phi}^2 \gg m_0 \Rightarrow$ higgsino DM for any $m_0, m_{1/2}$
- $m_{\phi}^2 < 0 \Rightarrow$ can have A-funnel for any $\tan \beta$

 $m_0=300$ GeV, $m_{1/2}=300$ GeV, $\tan\beta=10$, $A_0=0$, $\mu>0$, $m_t=178$ GeV

H. Baer, CERN seminar, June 23, 2006

NUHM2 (2-parameter case)

- $m_{H_u}^2 \neq m_{H_d}^2 \neq m_0$: HB, Belyaev, Mustafayev, Profumo, Tata
- motivation: SU(5) SUSYGUTs where $\hat{H}_u \in \phi(5)$, $\hat{H}_d \in \phi(\bar{5})$
- can re-parametrize $m_{H_u}^2, m_{H_d}^2 \leftrightarrow \mu, m_A$ (Ellis, Olive, Santoso)
- large S term in RGEs \Rightarrow light $\tilde{u}_R, \ \tilde{c}_R$ squarks, $m_{\tilde{e}_L} < m_{\tilde{e}_R}$

NUHM2: m₀=300GeV, m_{1/2}=300GeV, tanβ=10, A₀=0, m_i=178GeV

H. Baer, CERN seminar, June 23, 2006

Non-universal gaugino masses

- ★ SUGRA models where GKF transforms non-trivially (Snowmass '96)
- ★ Heterotic superstring models with orbifold compactification: SUSY breaking dominated by the moduli field
- \star KKLT model of type IIB string compactification with fluxes

* ...

- ★ Extra-dimensional SUSY GUT models where SUSY breaking is communicated from the SUSY breaking brane to the visible brane via gaugino mediation (e.g. Dermisek-Mafi model)
- ★ Here we adopt a phenomenological approach of independent M_1 , M_2 , M_3 but require consistency with WMAP
 - MWDM: HB, Mustafayev, Park, Profumo, JHEP0507, 046 (2005)
 - BWCA DM: HB, Krupovnickas, Mustafayev, Park, Profumo, Tata, JHEP0512 (2005) 011.

- LM3DM: HB, Mustafayev, Park, Profumo, Tata, JHEP0604 (2006) 041.

 Related work: Corsetti and Nath; Birkedal-Hansen and Nelson; Bertin, Nezri and Orloff; Bottino, Donato, Fornengo, Scopel; Belanger, Boudjema, Cottrant, Pukhov, Semenov; Mambrini, Munoz and Cerdeno; Auto, HB, Belyaev, Krupovnickas; Masiero, Profumo, Ullio

$$\Omega_{\widetilde{Z}_1}h^2$$
 vs. M_1

Sparticle mass spectra vs M_1

 $m_0 = 300 \text{GeV}, m_{1/2} = 300 \text{GeV}, \tan \beta = 10, A_0 = 0, \mu > 0, m_t = 178 \text{GeV}$

H. Baer, CERN seminar, June 23, 2006

MWDM: Any point in m_0 - $m_{1/2}$ plane can be WMAP allowed

MWDM: small $\widetilde{Z}_2 - \widetilde{Z}_1$ mass gap

mSUGRA: tan β =10, A_0 =0, μ >0, m_t =178 GeV

NUGM: $M_1 \neq m_{1/2}$, $tan\beta=10$, $A_0=0$, $\mu > 0$, $m_t=178$ GeV

H. Baer, CERN seminar, June 23, 2006

$m(\ell^+\ell^-)$: mass gap observable at LHC for MWDM

Bino-wino co-annihilation (BWCA) scenario

- If $M_1/M_2 < 0$, then no mixing between bino-wino
- Can only reduce relic density via bino-wino co-annihilation when $M_1\simeq -M_2$ at $Q=M_{weak}$

2005/07/26 09.06

In BWCA at $m_0 \stackrel{<}{\sim} 500$ GeV, $BF(\widetilde{Z}_2 \rightarrow \widetilde{Z}_1 \gamma)$ enhanced!

MWDM: $M_2 \neq m_{1/2}$, $tan\beta=10$, $A_0 = 0$, $\mu > 0$, $m_t = 178 \text{ GeV}$ BWCA: $M_2 \neq m_{1/2}$, $tan\beta=10$, $A_0 = 0$, $\mu > 0$, $m_t = 178 \text{ GeV}$ m_{1/2} (TeV) 6.0 m_{1/2} (TeV) 0.8 1.2 0.09 0.12 0.7 1 102 0.11 0.6 0.10 0.8 0.5 10-4 0.4 0.6 0 0.09 0.3 0.11 0.05 0.3 0.4 0.2 LEP 2 0.2 0.1 LEP2 0.2 0.8 1.2 1.4 1.6 1.8 0.2 0.4 0.6 0.8 1.2 1.4 1.6 0.4 0.6 1 1.8 1 m_o (TeV) m_o (TeV)

Haber+Wyler; Ambrosanio+Mele; Baer+Krupovnickas: JHEP 0209, 038 (2002)

Mixed higgsino DM from a low M_3 (LM3DM)

• low $M_3 \Rightarrow$ low $m_{\tilde{g}}, m_{\tilde{q}}, \mu$

H. Baer, CERN seminar, June 23, 2006

Sparticle mass spectra for LM3DM

2006/02/14 10.59

• low $m_{\tilde{g}}, m_{\tilde{q}}, \mu \Rightarrow$ huge DM detection rates!

H. Baer, CERN seminar, June 23, 2006

Direct/indrct DM rates greatly enhanced for LM3DM

 $m_0=300 \text{ GeV}, m_{1/2}=300 \text{ GeV}, \tan\beta=10, A_0=0, \mu>0, m_t=175 \text{ GeV}$

In LM3DM, $BF(\tilde{g} \rightarrow \tilde{Z}_i)$ loop decay enhanced!

2006/02/03 16.37

Baer, Tata, Woodside: PRD42 (1990) 1568.

H. Baer, CERN seminar, June 23, 2006

Mixed modulus-AMSB models

 \star KKLT model: type IIB superstring compactification with fluxes

- stabilize moduli/dilaton via fluxes and e.g. gaugino condensation on $D7\,$ brane
- introduce anti-D3 brane (uplifting potential; de Sitter universe with $\Lambda > 0$
- small SUSY breaking due to $\overline{D3}$ brane
- mass hierarchy: $m_{moduli} \gg m_{3/2} \gg m_{SUSY}$
- ★ MSSM soft terms calculated by Choi, Falkowski, Nilles, Olechowski, Pokorski
- ★ phenomenology: Choi, Jeong, Okumura, Falkowski, Lebedev, Mambrini,Kitano, Nomura
- ★ see also: HB, E. Park, X. Tata, T. Wang, hep-ph/0604253

Parameter Space

MSSM sparticle mass scale $\sim \frac{m_{3/2}}{16\pi^2} \equiv M_s$

Ratio of modulus-mediated and anomaly-mediated contributions set by a phenomenological parameter $\pmb{\alpha}$

Modulus-mediated contributions depend on location of fields in extra dimensions. These contributions depend on "modular weights" of the fields, determined by where these fields are located.

modular weights $n_i = 0$ (1) ($(\frac{1}{2})$) for D7 (D3) ((intersection)) Gauge kinetic function indices $l_a = 1$ (0) on D7 (D3) branes.

Model completely specified by

$$m_{3/2}, \ lpha, \ aneta, \ sign(\mu), \ n_i, \ l_a$$

Radiative EWSB determines μ^2 as usual.

Soft SUSY Breaking Terms

The soft terms renormalized at $Q \sim M_{\rm GUT}$ are given by,

$$M_{a} = M_{s} \left(\ell_{a} \alpha + b_{a} g_{a}^{2} \right),$$

$$A_{ijk} = M_{s} \left(-a_{ijk} \alpha + \gamma_{i} + \gamma_{j} + \gamma_{k} \right),$$

$$m_{i}^{2} = M_{s}^{2} \left(c_{i} \alpha^{2} + 4\alpha \xi_{i} - \dot{\gamma}_{i} \right),$$

with

$$c_i = 1 - n_i,$$

$$a_{ijk} = 3 - n_i - n_j - n_k,$$

$$\xi_i = \sum_{j,k} a_{ijk} \frac{y_{ijk}^2}{4} - \sum_a l_a g_a^2 C_2^a(f_i), \text{ and } \dot{\gamma}_i = 8\pi^2 \frac{\partial \gamma_i}{\partial \log \mu}$$

We will always fix $l_a = 1$ and examine two cases:

★ $n_i = 0$; Zero Modular Weight (ZMW).

★ $n_{\text{matter}} = 1/2$, $n_{\text{Higgs}} = 1$, Non-Zero Modular Weight (NZMW).

True Unification and Mirage Unification

Low mirage unification scale

If M_1 weak = $\pm M_2$ weak, potential for agreement with relic density via Mixed Wino DM (MWDM) / Bino-Wino Coannihilation (BWCA).

ZMW Model

Mirage unification for scalar masses also, but spoiled by Yukawa couplings (NZMW model is an exception). Note low value of $m_{\tilde{t}_R}$. Anticipate light \tilde{t}_1 .

ZMW Model Mass Spectrum

For low positive α , $m_{\tilde{t}_1} \sim m_{\tilde{Z}_1}$, and for large $\tan \beta \ m_{\tilde{\tau}_1} \sim m_{\tilde{Z}_1}$ also. Stop and stau co-annihilation mechanisms operative. For negative α in first frame, we have BWCA. No MWDM possible as for the required α , $\tilde{t}_1 = \text{LSP}$.

 $\begin{array}{l} \mbox{Stop coannihilation region.}\\ \mbox{Mixed higgsino region at low positive alpha.}\\ \mbox{BWCA for $\alpha < 0$. No MWDM region.}\\ \mbox{In the neighbourhood of Point 2, $m_{{{\widetilde t}_1}} < m_t, $m_h \stackrel{<}{\sim} 120 \mbox{ GeV} \\ \Rightarrow \mbox{Electroweak baryogenesis? (Carena, Quiros, Wagner; Balázs, Carena, Wagner)} \end{array}$

H. Baer, CERN seminar, June 23, 2006

NZMW Model

Now the modulus-mediated contribution to $A(GUT) \sim M_s$, so stop is not as light as in ZMW case.

Stau NLSP \implies Stau co-annihilation; Higgs funnel annihilation Also, BWCA for $\alpha < 0$, $\tan \beta \sim 10$.

Stau coannihilation, Higgs funnel and BWCA regions clearly seen. Also, mixed bino-wino-higgsino region (via low $|M_3|$). Bulk region at low $m_{3/2}$. LHC reach qualitatively similar to ZMW case.

Conclusions

 \bigstar SUSY is standard way beyond the SM

★ SUGRA models most naturally encompass DM: thermal WIMPS

- ★ WMAP bound $\Omega_{\widetilde{Z}_1} h^2 = 0.113 \pm 0.009$ especially constraining
 - bulk, $\tilde{\tau}$ coann., HB/FP, A-funnel, h-funnel, \tilde{t}_1 coann.
- **\star** Various regions \Rightarrow distinct collider/DM signatures
- ★ Non-universality
 - normal scalar mass hierarchy (NMH)
 - NUHM1, NUHM2 models
 - mixed wino DM
 - bino-wino co-annihilation DM
 - mixed higgsino DM if M_3 reduced
- ★ MM-AMSB (KKLT) phenomenology

Weak Scale Supersymmetry

HB and X. Tata Spring, 2006; Cambridge University Press

- \star Part 1: superfields/Lagrangians
 - 4-component spinor notation for exp'ts
 - master Lagrangian for SUSY gauge theories
- ★ Part 2: models/implications
 - MSSM, SUGRA, GMSB, AMSB, \cdots
- ★ Part 3: SUSY at colliders
 - $\ production/decay/event \ generation$
 - collider signatures
 - R-parity violation

